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The 1977 Nobel Prize in Physics was awarded to Phillip Anderson, Sir
Nevil Mott, and John van Vleck, “for their fundamental theoretical investiga-
tions of the electronic structure of magnetic and disordered systems.” Their
theoretical work stimulated a great deal of experimental activity that contin-
ues to this day, particularly in the area of disordered systems with restricted
geometry. This lab will serve as an introduction to this field, as well as
an introduction to low-noise measurement techniques used in many other
condensed-matter fields.

Part I

1 Preliminary concepts

1.1 Nulled lock-in detection

Very often in physics, you have some sinusoidal signal whose amplitude is
expected to change by small amounts, and you need to measure these small
changes. (This will be the case in this lab.) One very effective way of doing
this is by nulling, i.e. subtracting another signal at the same frequency and
with nearly the same amplitude, then amplifying the difference between the
two signals. If your experimental signal changes by only a few parts per
million, it can be hard to resolve that change. However, if you want to
measure a change by a factor of two in a signal 106 times smaller than your
original signal, that is usually easier.

Consider two signals that have the same frequency and the same phase.
In this case, the change in the difference is just equal to the change in the
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magnitude of one of the signals.

V0(t) = V0e
iωt

V1(t) = (V1 + δV )eiωt

If V1 − V0 is small enough to be comparable to – or even smaller than – δV ,
then all you need to do is measure the amplitude of V1(t)− V0(t) to get δV .

V1(t)− V0(t) = δV eiωt

1. Consider the case where V1(t) has a slightly different phase from V0(t).

V0(t) = V0e
iωt

V1(t) = (V1 + δV )ei(ωt+φ)

Sketch the complex amplitudes of V1(t) and V0(t) as vectors in the
complex plane, and sketch the complex amplitude of the difference
V1(t) − V0(t). Assume V0 ≈ V1 and φ � 1. What are the amplitude
and phase of the difference signal? How does the phase of the difference
relate to the phase φ of V1(t)?

Hint: Since the factor of eiωt is common to both signals, and therefore
to the difference between them, you can ignore it. This is the same as
going to a rotating reference frame, where the real and imaginary axes
rotate along with the signal. In this frame, V0 always lies along the real
axis.

2. Would measuring the change in the amplitude of V1(t)−V0(t) give you
δV ? If not, what would?

1.2 Four-wire technique

The measurement leads of a sample in a cryogenic environment contain some
resistance. There is an intimate relationship between electrical conductiv-
ity and thermal conductivity in a metal. If the wires leading down to the
sample are good electrical conductors, they will also be good thermal con-
ductors, and they will carry heat down from their room-temperature con-
nections and heat up the sample. For this reason, most wires that connect
a sample inside a cryostat to the outside world are made of some high-
resistance material, such as constantan, an alloy of copper and nickel. This
poses certain challenges to measuring the resistance of a cold sample, and a
surprising amount of care is needed to get this kind of measurement right.
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Figure 1: Measuring the resistance of a
cold sample with resistive leads.

If we simply pass a current
through the leads and measure
the voltage across A and B, the
resistance of the leads will con-
tribute to that voltage. In Fig-
ure 1, we would measure a to-
tal resistance of 2R + r, when
we just want r. This would
not be a problem, if we knew
R to a high degree of precision,
but usually we don’t. First, R
is usually much larger than r,
and the voltage due to the leads
overwhelms the signal due to
the sample. Second, the large
temperature gradient across the
lead wires can lead to bizarre
and unusual effects, such as

thermoelectric potentials and weird magnetoresistances. If you want to study
those effects, fine, but if you just want to study your sample r, then you’d
better find a way to get rid of the effects of the lead wires.

You could use superconducting lead wires to get rid of R, but that would
require cooling the leads, and you would still have a temperature gradient
between the superconducting part and the room-temperature measurement
electronics. You might also try running ordinary copper (high-conductivity)
leads through the bath, and this is often done. However, the simplest and
most robust way of isolating the voltage of the sample from that of the leads
is to use two sets of lead wires, only one of which carries current. This is
known as the four-wire technique, and it is illustrated in Figure 2.
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Figure 2: The four-wire measurement tech-
nique. Careful of your grounds!

Here, you pass a current
through one set of leads and
measure the voltage across the
other. As long as no cur-
rent flows through the voltage
leads, their resistances, labeled
R′ in the figure, don’t con-
tribute to your signal. Now, this
seems straightforward enough,
and you may be wondering why
I said this required a surprising
amount of care earlier. The rea-
son is that it is very difficult in
practice to ensure that no cur-
rent flows back through the volt-
age leads. Go back and look at
Figure 2. Say you inject current
at the point labeled ”A.” In a
real experiment, ”A” would be
the inner conductor of some coaxial cable, and ”B” would be the outer shield,
held at ground. The voltage leads ”C” and ”D” would also be the inner and
outer conductors of a coax cable, respectively. In the figure, it is fairly easy
to see that current will flow back to both ”B” and ”D,” because they are
both at ground. In a real experiment, it is not always so obvious, and you
have to find some way to break the ground connection at ”D.” When you
do the lab you will learn two methods of breaking this ground loop, an ob-
vious one using shielded connectors and a not-so-obvious one using isolation
transformers.

3. If you apply a current I at the point ”A” in Figure 2, what voltage will
you measure at ”C?” What voltage would you measure if you were to
disconnect the ground at ”D?”

1.3 Electrical conduction in films

The resistance of a rectangular block of metal with conductivity σ is given
by

R =
`

waσ
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where ` is the length of the sample in the direction of the current flow, and
w and a are the width and height of the sample, respectively.

For a square sample, with ` = w, the resistance only depends on the
thickness.

R2 =
1

aσ

The resistance of any sample can be expressed in terms of R2 and the length
to width ratio `/w.

4. Do it. Express the length-to-width ratio as n = `/w. Yes, this is a
dead simple exercise, but you will need this formula for the resistance
when you analyze your data.

5. Using the bulk conductivity of silver, estimate the resistance of a film
100Å thick, 5mm wide, and 25mm long.

6. If the conductivity changes by a small amount δσ, how does the resis-
tance of a film change? Express the change in R in terms of the R2

and δσ.

2 Experimental tasks 1: sample preparation

In the last lab, Vacuum Techniques and Thin Film Deposition, you grew a
thin metal film that could be used as a sample for this lab. In this lab, you
will cool a film down to 4.0K in the cryostat in Room 209, apply a magnetic
field, and measure the resulting change in the film’s resistance as a function
of magnetic field.

It is best to use a relatively fresh sample for this lab. Older thin metal
films tend to oxidize, and after a few weeks they will cease to conduct. If
your film from Lab 3 has a resistance between about 25Ω and 250Ω, and
you can make good electrical contact to it, you should use it for this lab. If
not, don’t worry about it. Such things happen in experimental physics. Just
make another one.
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Part II

3 Disorder and localization

In a perfectly periodic potential, electrons are free to move ballistically, with-
out suffering any loss of momentum over time. (The theory of such Bloch
waves is covered in any introductory solid-state physics text, and we won’t
go into it in detail here. If you want to learn solid state physics, Tanner [1]
offers an excellent introduction to the subject. The standard encyclopedia of
the subject is Ashcroft and Mermin [2], which is an excellent reference after
you have read Tanner.) We know from x-ray diffraction experiments that
metals exhibit periodic structure on a microscopic scale, and we also know
that it is electrons that carry electrical current. Yet, when a current is set up
in a metal, it usually dies out rather quickly unless there is a voltage present
to push it along. Real electrons in a normal metal do not move ballistically
for long.

The resistance to an electrical current that a normal metal has is due
to disorder. No crystal lattice in nature is perfectly periodic. Vibrations
due to heat distort the lattice at finite temperatures, and even at very low
temperatures, some static disorder is usually present in form of dislocation,
vacancies, or impurities. This static disorder would remain even if the system
were at absolute zero. A theoretical model can be constructed where an
electron moves ballistically between regions of disorder, where the potential
is periodic, but gets scattered when it encounters an interruption in the
periodicity of the lattice. A semiclassical treatment of this model, where
electrons are considered point particles that obey Fermi-Dirac statistics, is
quite simple and yields predictions that are in good agreement with nature.

A model of a disordered conductor that takes in to account the specif-
ically wavelike properties of electrons is somewhat more complicated, and
under normal circumstances, it is not necessary. The reason for this is that
inelastic scattering (mostly from phonons) usually prevents an electron from
retaining phase coherence over distances much longer than the mean free
path. Coherent quantum mechanical interference cannot occur over longer
distances, and a semiclassical picture applies. At low temperatures, however,
this inelastic scattering is suppressed, and elastic scattering dominates, al-
lowing electrons to maintain phase coherence over relatively large distances.
This phase coherence gives rise to coherent interference phenomena which
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can lead to macroscopically observable effects. You will observe one of these
effects, Weak Localization in a thin metal film, in this lab.

3.1 Behavior in one, two, and three dimensions

There is a theorem that, in a one-dimensional sample at zero temperature,
any amount of disorder, no matter how small, will force the sample to be-
come an insulator. The electrons get localized by any small deviation from
perfect periodicity in a one-dimensional potential. This theorem is related to
a similar one for plane waves, which you will prove in the exercises. In three
dimensions, a large amount of disorder will also localize electrons, but a small
amount will not. In two dimensions, the behavior is the same as in one. At
absolute zero, any arbitrarily small amount of disorder leads to localization.
This is somewhat surprising, since there is no corresponding simple theorem
that guarantees the existence of bound states in two dimensions, as there is
in one dimension.

3.2 Coherent backscatter I - Qualitative picture

The physical mechanism of localization due to disorder, whether in one, two,
or three dimensions, is coherent backscattering. If one impurity scatters
electrons isotropically, i.e. with equal probability in all directions, you might
expect a random array of isotropic scatterers to also scatter electrons equally
in all directions. In fact, they do not. If the electrons’ wave functions can
retain phase coherence over long distances, then a collection of isotropic
scatterers produces more backward scattering than in any other direction.
The degree to which reflection is enhanced depends on the distance over
which electrons can retain phase coherence. In two dimensions, if the phase-
coherent distance is infinite, then the backscattering probability becomes
one, and the electrons are localized.

To understand how phase coherence leads to enhanced backscattering, con-
sider an array of point scatterers, as shown in Figure 3. An electron’s wave
function enters this array and scatters isotropically off of every point defect
it encounters. Scattered waves will also scatter when they encounter defects
in the lattice, leading to second order scattered waves, third order waves, and
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Figure 3: A random array of isotropic scatterers.

so on. The net wave function is the sum of all of these multiply-scattered
waves.

If we take two randomly chosen waves and look at their sum, their phase
relation will not, on average, be anything special. These two waves are just
as likely to interfere destructively as constructively, and on average they will
add incoherently. For any random direction, the net scattering probability is
just the incoherent sum of all of the individual waves.

Consider now a specially-chosen pair of waves, as shown in Figure 4.
These traverse the same nearly closed loop in opposite directions. One,
represented by the solid line, travels around the loop in a counterclockwise
direction. The other, represented by the dashed line, traverses the loop in
a clockwise direction. The beginning of the path enclosed by the solid line
corresponds to the end of the path enclosed by the dashed line and vice-versa.
If the beginning and end points of the loop are aligned with the direction of
the incoming waves, there exists a region where the outgoing waves are always
in phase. The reason for this phase coherence is simple – the optical path
lengths are the same around the loop regardless of the direction travelled.
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Figure 4: For every loop that returns near the origin, there is another one
going around the same path backwards that has the same phase.

This phase coherence is found only in a cone directed in the opposite direction
of the incoming wave, and it occurs only if the end points of the loop are lined
up with a given accuracy. This coherent interference will be present for all
pairs of complimentary scattering paths with end points close and aligned,
and all these pairs will add together to produce a significant backscattered
“bright spot” in addition to that produced by isotropic scattering. This
increased probability of reflection (over the isotropic case) must translate to
a decreased probability of transmission, with implies a decreased conductivity
for the sample.

7. Optional: Show that every attractive potential, no matter how shallow,
in one dimension has at least one bound state.

Hint: Assume that the attractive potential is negative everywhere and
goes to zero as x goes to infinity in both directions. First show that the
energy of any state cannot be any smaller than the lowest-energy eigen-
value of the hamiltonian of the system. Then show that it is possible
to pick a Gaussian wave function that has a negative expectation value
for its energy. Put the two together to show that the lowest-energy
eigenstate must have negative energy, and therefore be bound.
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3.3 Experimental tasks 2: electronics

Once you have a sample that you can use, install it in the cryostat, and
measure its resistance using the four-wire technique we talked about previ-
ously. Do this at room temperature. Don’t bother with liquid helium at
this stage, and don’t worry about nulling yet. For a current source, use the
lock-in’s internal oscillator in series with a large, stable resistor. This load
resistor should have a resistance that is substantially greater than the sam-
ple’s, so that changes in the sample’s resistance won’t have much effect on
the excitation current. Beware of ground loops! You may want to insert a
1:1 transformer between the lock-in’s voltage source and the load resistor to
prevent them.

Now null the signal. To generate V0(t), split the excitation voltage, and
send one copy of it to the load-resistor/sample circuit and the other to the
input of the DT72A inductive divider. The DT72A is just a low-noise variable
transformer. The output voltage is some fraction of the input voltage, and
you get to adjust that fraction. Each knob on the front of the box controls
one digit in that fraction. For example, you can dial in Vout/Vin = 0.1415926
by setting the first knob to 1, the second to 4, the third to 1, etc. Send the
output of the DT72A to the B-input of the lock-in, and measure the difference
between the sample voltage and the DT72A’s output voltage. Adjust the
DT72A until this difference is as small as possible.

While you can use the digital readout of the lock-in to take data, you
can often get a much better feel for what’s going on by sending the lock-in’s
output voltage to an oscilloscope and using the scope to measure the changes
in this voltage. Full scale on the digital readout should correspond to 10V
on the output voltage, so the gain of the lock in is just 10V divided by its
sensitivity.

3.4 Experimental tasks 3: anticipating the signal size

Calculate the change you would expect in the sample voltage if the sample’s
conductance (aδσ) were to change by a single conductance quantum e2/h.
This will be the order of magnitude of your weak-localization signal. Calcu-
late the voltage change you expect to see at the output of the lock-in, and
compare it with the level of noise you see in your measurement. Do you have
the resolution to see weak-localization magnetoresistance in your sample? If
not, what can you change in your electronic setup to achieve it?
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Figure 5: The front face of the DT72A variable transformer. Sockets 2 and
3 are the normal inputs, and sockets 5 and 6 tap the output (the secondary
coil of the transformer). Use the knobs to dial in the fraction of the input
voltage you want to appear at the output. The sockets are bannana-type,
so you will have to use BNC-to-bananna adapters at both the input and the
tap.

If, for some reason, you decide that you just can’t get the resolution you
need from your existing setup, you can amplify the sample voltage using a
low-noise preamp. This is especially useful if your sample resistance is small,
and we have a Stanford Research SR560 in the lab for this purpose. If you
decide to use a preamp, don’t forget to include its gain when calculating the
change in the sample voltage ∆V (B) when you apply a magnetic field.

Part III

4 Diffusion

4.1 Fick’s law

A classical particle bouncing around in a random collection of scatterers
executes a random walk. Because of the wandering nature of the path it
takes, the net distance it travels after many bounces is not linear in time.
The mean-square distance L a particle travels after a random walk of time t
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is
< L2 >= 2vF `t (1)

where ` is the mean free path of the particle, and vF is its velocity (the Fermi
velocity for semiclassical conduction electrons). Many independent particles
undergoing random walks obey Fick’s law :

~J = −D~∇φ (2)

where φ is the number of particles per unit volume, and ~J is the current
density of particles. D is known as the Diffusion constant, and in terms of
the microscopic properties of the random walk, it is

D =
1

n
vF ` (3)

where n is the number of dimensions the particles are free to move in. Fick’s
law, along with a conservation law for the number of particles, leads in a
straightforward way to the diffusion equation.

∂φ

∂t
= D∇2φ (4)

8. Optional: Derive Equation 1, and show how Fick’s law follows from it.
Show where the expression for D (Equation 3) comes from.

9. Optional: Implicit in Equation 2 is the assumption that the total num-
ber of particles is conserved. What form would Equation 2 take if
particles were being injected into - or removed from - the system?

4.2 Green’s functions

Green’s functions are widely used in condensed-matter theory. In simplest
terms, a Green’s function is the response of a system to a point source.
Say we have some system whose behavior is governed by an inhomogeneous
differential equation.

L[φ(~r, t)] = ρ(~r, t) (5)

where L represents an operator, ρ(~r, t) represents a source, and we want
to find the function φ(~r, t) that describes the behavior of the system. A
common example is electrostatics, where L = ∇2, ρ is the charge, and φ is
the potential.
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Now, most homogeneous differential equations have been well studied, and
you can look up solutions to them or have Mathematica tell you what they
are. The difficulty, in our electrostatics example and in most other physics
problems, comes from the source term ρ(~r, t), which may be different for every
problem. What we need, then, is a general solution to the inhomogeneous
problem and a way to connect it to a specific source ρ(~r, t). Green’s functions
provide that solution.

The Green’s function G(~r, t;~r0, t0) associated with a particular differential
operator L is the solution to a very specific inhomogeneous differential equa-
tion. It is the solution when the source ρ(~r, t) is a point, or delta function,
at the coordinate ~r0 and, where appropriate, occurring at time t0.

L[G(~r, t;~r0, t0)] = δ(n)(~r − ~r0)δ(t− t0) (6)

Another way of saying this is that G(~r, t;~r0, t0) is the response of the system
to a point source. In our electrostatics example, the point source would be
a point charge, and the Green’s function is the familiar 1/r potential for a
point charge. (Note that in this case there is no time dependence, and we
just leave out the δ(t − t0).) In the same way that any arbitrary source, no
matter what its shape, can be thought of as a collection of point sources,

ρ(~r, t) =

∫
ρ(~r0, t0)δ(~r − ~r0)δ(t− t0)d

nr0dt0

the response of the system can be found by summing up the responses from
all the individual points that make up the source.

φ(~r, t) =

∫
G(~r, t;~r0, t0)ρ(~r0, t0)d

nr0dt0 (7)

Note that this method only works for linear differential equations, in the sense
that L[A] = α and L[B] = β imply L[A+B] = α+β. Physically, this means
that the system has to obey linear superposition: The response of the system
to two or more sources is just the sum of the individual responses. Linear
superposition holds for electric fields and potentials, quantum-mechanical
wave functions that are solutions to the Schrödinger equation, and just about
anything else we are usually interested in.

In weak-localization theory, we will deal with the diffusion equation a lot
because it describes the transport of an electron through a random array of
scatterers.
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10. Show that the solution φ(~r, t) given by Equation 7 is a solution to
Equation 5 for any linear operator L.

The following problems involve the normalized Green’s function for the
diffusion equation.

G(~r, t;~r0, t0) =

{
exp[−|~r−~r0|2/4D(t−t0)]

(4πD(t−t0))n/2 if t ≥ t0,

0 if t < t0.
(8)

where n is the number of dimensions, and D is the diffusion constant. The
physical meaning of this Green’s function is this: G(~r, t;~r0, t0) represents the
probability density for finding a particle as it undergoes a random walk. In
the case of weak localization, the particle will be a conducting electron that
is bouncing off scattering centers - i.e. diffusing - through a disordered solid.
The probability dP of finding a particle that started out at ~r0 at time t = t0
in a small volume dV = dn~r around the point ~r is

dP = G(~r, t; ~r0, t0)dV

11. For the function G(~r, t;~r0, t0) defined in Equation 8, show that normal-
ization is preserved at all times t > t0, i.e. show that the probability
of finding a particle anywhere is 1, regardless of when you look for it.

12. Show that G is the Green’s function for the diffusion equation, i.e. show
that it satisfies[

∂

∂t
−D∇2

]
G(~r, t;~r0, t0) = δ(t− t0)δ

(n)(~r − ~r0)

where n is the number of dimensions, D is the diffusion constant, and
t > t0. For time t < t0, G(~r, t; ~r0, t0) = 0.

13. Now consider boundary conditions. What would G become if diffusion
were limited to a slab of thickness a� ` around the x-y plane? Assume
that the particles are confined to −a/2 < z < +a/2, but that they are
free to move about in the x and y directions. Write down an expression
for G good for times t� D/a2, i.e. when the particles have spread out
in the z-direction as much as they are going to.

This kind of sample is called quasi-two-dimensional, because it is es-
sentially two-dimensional for diffusion, at least for times t � D/a2,

14



but microscopically the motion occurs in three dimensions, a � `.
There are whole research fields built around studying such mesoscopic
systems, physical objects that exhibit behavior that is microscopic in
one sense and macroscopic in another, or even behavior that is neither
truly microscopic nor macroscopic. Quasi-two-dimensional samples are
relatively easy to make, and in fact you did make one when you grew
your thin metal film in the vacuum lab. Weak localization is present
in samples of any dimensionality, but it is easiest to see in quasi-two-
dimensional samples.

Electrons are conserved. They don’t just vanish, so the probability den-
sity G ought to be conserved as well. They may, however, lose their phase
coherence, and in weak localization it is only those electrons that retain their
phase coherence that we are interested in. To describe these electrons, we
need a special kind of Green’s function called a Cooperon, which, in this case,
is a decaying Green’s function for the diffusion equation.

W (~r, t;~r0, t0) = G(~r, t;~r0, t0)e
−(t−t0)/τφ

W (~r, t;~r0, t0) is the Cooperon. (The “Coop” part is pronounced as in “chicken
coop.” More appropriately, it is pronounced as in the last name of Leon
Cooper, of Bardeen-Cooper-Schrieffer fame, winner of the 1972 Nobel Prize
in Physics and inventor of the Cooperon propagator W .) All we’ve done here
is to multiply two probabilities. G is the probability of finding an electron,
and exp(−(t − t0)/τφ) is the probability that the electron has not lost its
phase coherence in time (t − t0). One of the main ways phase coherence
is destroyed for real electrons in a real sample is when the electron collides
with a phonon. These collisions can pretty much always happen when the
temperature of the sample is not zero. The quantity τφ is the average time
to an inelastic scattering event, and it should not be confused with τ , with
is the time to an elastic scattering event (one that preserves memory of the
electron’s phase). As the temperature is lowered, phase-destroying events
ought to become rarer, and τφ ought to increase.

4.3 Experimental tasks 4: cryogenic measurements

Get your T.A. to help you transfer liquid helium into the cryostat, and cool
your sample down to 4.0K. Measure the sample’s resistance as a function of
temperature as you cool it. The resistance should change by at least a factor
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of two (and probably more) between room temperature and 4.0K. There
should be no need to null for this measurement. Can you explain the R(T )
curve you observe?

Now null the signal and send the output of the lock-in to an oscilloscope,
just as you did at room temperature when you set up your electronics the
first time. Increase the gain of the lock-in and make any other adjustments
you need to resolve the weak-localization magnetoresistance. Apply a mag-
netic field, and look for magnetoresistance. When you see it, check to make
sure that it follows the same curve as you ramp the field up and then back
down again. Also check negative field values, since the weak-localization
magnetoresistance should only depend on the absolute value of B, not its
sign.

Once you feel confident you are seeing weak-localization magnetoresis-
tance, record ∆R(B) for several field values. Use enough points to resolve
the shape of the curve, since you will be fitting it to weak-localization theory
later.

Optional: Measure the magnetoresistance curve at several different tem-
peratures. What happens at temperatures below 4.0K? How warm can the
sample get before it no longer exhibits a magnetoresistance? Does the mag-
netoresistance have the same basic shape at all temperatures, or are there
regions where its qualitative character is fundamentally different?

Part IV

5 Conductivity of a disordered metal

5.1 The Einstein relation

The Einstein relation gives the conductivity σ(ω) of a metal as a function of
the frequency of an applied voltage ω = 2πf .

σ(ω) = e2g(EF )D(ω),

where g(EF ) is the density of states per unit volume at the Fermi surface,
and D(ω) is the diffusion constant in the frequency domain. In the time
domain, this diffusion constant is just a velocity correlation function

D(t) =
1

n
〈~v(t) · ~v(0)〉
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where n is the number of dimensions the electrons are free to move about in
(3 in bulk), ~v(0) is the velocity of an electron at time zero, and ~v(t) is the
velocity of the same electron after time t has elapsed. For our purposes, we
can assume that the electrons travel ballistically between scattering events,
so that, if no scattering event occurs during the time t,

~v(t) · ~v(0) = v2
F

where vF is the Fermi velocity. If a scattering event does occur,

~v(t) · ~v(0) = 0

On average, then, if the scattering time is τ

〈~v(t) · ~v(0)〉 = v2
F e

−t/τ

14. Using these assumptions, show that the conductivity is

σ(ω) =
Ne2τ

m

1

1− iωτ
,

where N is the number of conducting electrons per unit volume, e is
the charge of an electron, and m is its mass.

Hint 1: Treat the conducting electrons as a gas of free particles. With
this assumption, you can use the free-electron value for the density of
states:

g(E) =
3

2

N

EF

√
E

EF

This is the assumption Drude used when he first calculated the con-
ductivity of a metal. This result, known as the Drude conductivity, is
a pretty good approximation for most metals.

Hint 2: D(t) doesn’t have any physical meaning for t < 0 in our picture,
and you can treat it as zero for negative times. This means your limits
of integration in your Fourier transform should be from zero to infinity
in t, rather than from negative infinity to positive infinity.

D(ω) =

∫ ∞

0

eiωtD(t)dt
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5.2 Coherent backscatter II - Quantitative prediction

Coherent backscattering gives rise to a correction to the velocity correlation
function, which becomes

〈~v(t) · ~v(0)〉 = v2
F

(
e−t/τ − Pr(t)

)
where the correction term

Pr(t) =
1

2π
W (~0, t;~0, 0)`3

(
λF

`

)2

is small compared to the Drude part e−t/τ . In this expression, W (~r, t;~0, 0)
is the Cooperon describing the probability density that, if an electron starts
at the origin ~0 at time 0, it will be found at ~r at a later time t with its
phase coherence intact. W (~0, t;~0, 0)`3 is the probability that an electron will
diffuse back into a volume `3 centered around where it started at t = 0 and
retain its phase coherence.

It can be shown that the angular size of the phase coherent spot is, in
the limit λF/`� 1 (weak disorder),

δθ ≈
√
λF

`

The probability of an electron scattering into this phase coherent spot (in
addition to the probability of being isotropically scattered) would be just
the ratio of the solid angle covered by the spot to 4π, the total solid angle
available for scattering. This may be approximated as just

δθ2 ≈
(
λF

`

)
Another factor of λF/` is included to account for the probability of having the
beginning and end points of the scattering path lined up with the direction of
the incoming electrons’ velocity within a factor of δθ, which is also required
for a phase coherent spot to exist. The factor of 1/2π is the result of a
rigorous, quantitative analysis using quantum field theory [3].

15. Evaluate the correction to the conductivity due to coherent backscat-
tering at ω = 0, for a quasi-two-dimensional sample of thickness a.
Express your answer in terms of the universal conductance quantum

e2

h
=

1

26kΩ
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Hint 1: Only those electrons that travel out around some closed loop
and then return to the origin contribute to the coherent backscatter
correction. You will need to neglect the behavior of the correction for
short times (t < τ), when the electrons have not yet left the origin. This
means that the limits of integration in your Fourier transform should
be from τ to infinity, rather than from zero to infinity. Unfortunately,
this makes for a real ugly integral. The trick to evaluating it is due to
Chakravary and Schmid [4], who make the approximation

∫ ∞

τ

exp
(
−
(

1
τφ
− iω

)
t
)

t
dt ≈

∫ ∞

0

exp
(
−
(

1
τφ
− iω

)
t
)
− exp

(
− t

τ

)
t

dt

Hint 2: There is a relationship between the number density and the
Fermi wave number kF that you might find useful. It is

N =
k3

F

3π2

This, as well as the expression for g(E) in terms of the number density
and the Fermi energy, is derived in Ashcroft and Mermin [2].

16. Optional: The inelastic dephasing time τφ is expected to be related to
temperature by a power law. Assuming τφ = A × (T0/T )p, where A
and p are constants, and T0 is some characteristic temperature, show
that the resistance of a thin film varies linearly with the log of the
temperature. If you were to measure R as a function of T and do a
linear fit between R and ln(T/T0), what would the fit parameters (slope
and y-intercept) tell you about the sample?

Detailed microscopic theories of electron and phonon transport give
predictions for the constant p. It often happens that theorists will come
up with several different theories, each of which predicts a different
value for p. When this happens, experimentalists step in, measure p,
and more often than not declare that the actual value is something
completely unexpected, and that all of the theories were wrong.

One of the first predictions of weak-localization theory was that the re-
sistance of a thin film should increase logarithmically as the temperature is
lowered. Initially, it was thought that this would be a definitive signature of
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weak localization. A number of people immediately set out to measure the
resistance versus temperature, and they did, if fact, see a clear logarithmic
dependence, just as predicted [5, 6, 7]. However, it was quickly discovered
that electron-electron Coulomb interactions could also produce the same ef-
fect [8]. The temperature dependence of the conductivity correction does not
give conclusive evidence of weak localization. What we need, if we want to
study this effect, is a way of turning the coherent backscattering on or off
without affecting anything else. If you are familiar with the Aharonov-Bohm
effect, you will see where this is going.

Think back to the complimentary closed loops in Figure 4. The elec-
tron goes the same distance whether it travels clockwise or counterclockwise.
Phase coherence is preserved between the two loops because they are the
same length, as long as the only thing that contributes to the phase is the
distance traveled. If we introduce a magnetic field perpendicular to the page,
it will contribute a phase to each path that is proportional to the flux en-
closed by the loop. However, this phase will not be the same for both loops!
The phase from the flux enclosed will be positive for one direction and nega-
tive for the other, and the symmetry between the two paths will be broken.
This destroys phase coherence and turns off the weak-localization correction
to the conductivity. The resulting magnetoresistance, the change in the re-
sistance of a film as a magnetic field is applied, is what you will observe in
the lab.

5.3 Magnetic field

In the presence of a magnetic field, the diffusion equation for charged particles
becomes [

∂

∂t
+D

(
i∇+

2e

h̄
~A(~r)

)2
]
G(~r, t;~0, 0) = δ(t)δ(n)(~r)

where ~A(~r) is the vector potential. If the sample is confined to the xy plane,
and the field is along the z axis, we may choose

~A(~r) = Bx̂

The Green’s function in this case becomes, at the origin,

G(~0, t;~0, 0) =

(
2eB

ha

)∑
n

exp

(
−2

eDB

h̄
(2n+ 1)t

)
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The conductivity correction is evaluated by the same procedure you used in
the exercise, and the result is

δσ(B) = −1

a

e2

πh

∑
n

{[
n+

1

2
+

h̄

4eBDτφ

]−1

−
[
n+

1

2
+

h̄

4eBDτ

]−1
}

This doesn’t look very enlightening at first, but it turns out that the sum
can be evaluated in terms of the digamma function, the logarithmic derivative
of the gamma function.

ψ(z) =
d [ln Γ(z)]

dz
=

Γ′(z)

Γ(z)
(9)

where Γ(z) is the usual Gamma function. There are many definitions for the
Gamma function. The one most commonly used in physics, and the one that
will be of most use to us, is

Γ(z) =

∫ ∞

0

t(z−1)e−tdt (10)

where <{z} > 0.
With the sum evaluated in terms of ψ, the conductivity becomes

δσ(B) =
1

a

e2

πh

{
ψ

(
1

2
+

h̄

4eBDτφ

)
− ψ

(
1

2
+

h̄

4eBDτ

)}

5.4 Digamma function

17. Optional: Using the definitions of the Gamma and Digamma functions
(Equations 10 and 9), and assuming z is always real and positive, show
the following.

(a) Γ(z + 1) = zΓ(z)

(b) Γ(1) = 1

(c) From the two results above, convince yourself that Γ(z) = (z−1)!
when z is a positive integer.

(d) Γ(z) ≈ −γ + (1/z) as z → 0, where γ is Euler’s constant.
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(e) Sketch a graph of Γ(z). Don’t have a computer or graphing calcu-
lator do it for you! This is an optional exercise, after all. Instead,
reason out what it should look like and why, then draw a picture
of what you expect.

(f) ψ(z + 1) = ψ(z) + (1/z)

(g) ψ(z) ≈ −γ − (1/z) as z → 0.

(h) ψ(z) ≈ ln(z)− (1/2z)− (1/12z2) + · · · when z � 1. For this one,
you may want to use Stirling’s approximation,

N ! ≈
√

2πNNN exp

(
−N +

1

12N
+ · · ·

)
(i) Sketch a graph of ψ(z).

18. The elastic scattering time τ is usually very short, compared with the
inelastic time τφ. We go to low temperatures precisely to obtain this
condition, which allows us to observe weak localization. In fact, for all
practical laboratory magnetic fields B, τ is usually so small that

B � h̄

4eDτ

The inelastic dephasing time τφ, however, is large enough at low tem-
peratures that our laboratory B-field might be larger or smaller than
the characteristic field h̄/4eDτφ. Using the approximation, for large z

ψ(z) ≈ ln z − 1

2z
− 1

12z2
+ · · ·

show that the magnetoresistance does not depend on τ , and calculate
the expected change in resistance of a thin film δR(B) = R(B)−R(0)
as a function of magnetic field B, the resistance per square of the film
R2, the total resistance of the film R(0), and the inelastic scattering
length L2

φ ≡ Dτφ. Plot this magnetoresistance, with appropriate units
on the y-axis, for Lφ = 0.5µm. Over what range would you need to
scan the magnetic field to best see the weak localization effect?
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5.5 Spin effects

We have seen two mechanisms that can break the symmetry between oppositely-
oriented closed loops: an applied magnetic field B, and random, usually ther-
mal effects lumped together in τφ. There is a third category that we must
discuss if we are to analyze data from a real film, and that is due to electron
spin. So far, we have not discussed spin, but for two real electrons to remain
in phase after a series of scattering events, their spin states must also stay
in phase. There are many things that can affect the spin of a conducting
electron, the two most prominent being spin-orbit and spin-flip interactions.
Spin-orbit coupling is, just as in the elementary hydrogen atom, an inter-
action between the orbital angular momentum of the electron and its spin.
Orbital angular momentum, in this case, is between the electron and a scat-
tering center, and it is present even though the electron is not bound to the
scatterer. Angular momentum must be conserved, but it can be passed be-
tween orbital and spin degrees of freedom. When this happens, the phase
of the spin state is altered, and this will affect the coherent backscattering
pattern.

Spin-flip scattering occurs when there is an exchange of angular momen-
tum between the scattering center and the electron itself, without orbital
angular momentum being involved. While it is possible to construct samples
that show evidence of spin-flip scattering, most of the time you don’t see it.
It’s not the kind of thing you stumble across by accident.

Both spin-orbit and spin-flip effects can be taken into account by including
an additional term in the correction Pr(t).

Pr(t) =
1

2π
W (~0, t;~0, 0)`3

(
λF

`

)2

Cs(t)

where the additional term Cs(t) is known as the spin Cooperon. Its derivation
is beyond the scope of this handout, but it has been evaluated by theorists
to be [4]

Cs(t) =
3

2
exp

[
−
(

4

3τso
+

2

3τsf

)
t

]
− 1

2
exp

[
− 2

τsf
t

]
where τso is the spin-orbit scattering time, and τsf is the spin-flip scattering
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time. Evaluating the conductivity correction with the spin Cooperon gives

δσ(B)− δσ(0) =
1

a

e2

πh

{
3

2

[
ψ

(
1

2
+
h̄

4e

1

L2
1B

)
− ln

(
h̄

4e

1

L2
1B

)]
− 1

2

[
ψ

(
1

2
+
h̄

4e

1

L2
0B

)
− ln

(
h̄

4e

1

L2
0B

)]}
where L0 and L1 are the singlet and triplet dephasing lengths, and they are
given by

1

L2
0

=

(
1

L2
φ

+
2

3L2
sf

)
+

4

3L2
sf

and
1

L2
1

=

(
1

L2
φ

+
2

3L2
sf

)
+

4

3L2
so

The inclusion of spin effects can lead to some bizarre and unexpected
results, including a reversal of the sign of the correction to the conductivity.
If spin effects are strong enough, particularly spin-orbit scattering, coherent
backscattering will lead to weak anti-localization.

19. Plot the expected magnetoresistance, in appropriate units, with L0 =
0.5µm and L1 = 0.5µm, L1 = 0.2µm, L1 = 0.1µm, L1 = 0.03µm, and
L1 = 0.01µm. Over what range would you need to scan the magnetic
field to best see the weak localization effect?

20. Optional: Using the appropriate asymptotic behavior of ψ(z), show
that for small magnetic fields (B � h̄/4eL2

0 and B � h̄/4eL2
1), spin

effects will lead to weak anti-localization when L1 < L0/
√

3.

21. Optional: Assume that spin-flip scattering is negligible, i.e. Lsf is in-
finite, spin-orbit scattering is constant, Lso = 2.0µm, and that inelas-
tic dephasing obeys a power law with respect to temperature, Lφ =
(1.0µm)(4.0K/T )2. Plot L0 and L1 versus temperature from 1K to
20K on a log-log scale. Plot the weak-localization magnetoconduc-
tance at 1.0K, 2.2K, 4.0K, and 20.0K.

Spin-orbit scattering usually scales as Z4, where Z is the atomic number
of the material the film is made out of, so light metals should show orbital
weak localization, whereas heavier metals should show spin effects. In this
lab, you can observe spinless weak localization in magnesium films, and spin-
orbit-dominated weak localization in silver films.
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5.6 Experimental tasks 5: data analysis

See if you can fit the weak-localization theory to the data you collected, and
extract values for L0 and L1, or Lφ, depending on which formula you use.

Optional: If you took data at several temperatures, do a fit for each, and
plot the dephasing lengths versus temperature. Can you explain any of the
features of your plot?
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